Implementing AI Algorithms from Scratch | CodeSignal Learn
Skip to main content
advanced
advanced
Implementing AI Algorithms from Scratch
Machine Learning
6 courses
106 practices
21 hours
Dive deep into the intricate universe of Artificial Intelligence. This path is designed to give you the perfect understanding of classic ML algorithms by implementing them from scratch without using any libraries like SK-learn.
See courses
4.61
(229)
2,746 learners
Earn a shareable
Certificate of Achievement
Verified skills you'll gain
Badge for Coding and Data Algorithms, Advanced
ADVANCED
Coding and Data Algorithms
Badge for Machine Learning Model Development, Advanced
ADVANCED
Machine Learning Model Development
Badge for Deep Learning and Neural Networks, Intermediate
INTERMEDIATE
Deep Learning and Neural Networks
Tools you'll use
Numpy
Python
Scikit-learn
Trusted by learners working at top companies
Uber
Meta
Instacart
Google
Netflix
Zoom
Course 1
Regression and Gradient Descent
4 lessons
17 practices
Dig deep into regression and learn about the gradient descent algorithm. This course does not rely on high-level libraries like scikit-learn, but focuses on building these algorithms from scratch for a thorough understanding. Master the implementation of simple linear regression, multiple linear regression, and logistic regression powered by gradient descent.
See details
Course 2
Classification Algorithms and Metrics
6 lessons
Course 3
Gradient Descent: Building Optimization Algorithms from Scratch
5 lessons
Course 4
Ensemble Methods from Scratch
4 lessons
Course 5
Unsupervised Learning and Clustering
4 lessons
Course 6
Neural Networks Basics from Scratch
3 lessons
Turn screen time into skills time
Practice anytime, anywhere with our mobile app.
Download on the App StoreGet it on Google Play
Scan to download
Sign up
Join the 1M+ learners on CodeSignal
Be a part of our community of 1M+ users who develop and demonstrate their skills on CodeSignal
From our community
Hear what our customers have to say about CodeSignal Learn
I'm impressed by the quality and can't stop recommending it. It's also a lot of fun!
name
Francisco Aguilar Meléndez
Data Scientist
Badge for General Programming, AdvancedBadge for Coding and Data Algorithms, AdvancedBadge for Deep Learning and Neural Networks, Expert
+11
I love that it's personalized. When I'm stuck, I don't have to hope my Google searches come out successful. The AI mentor Cosmo knows exactly what I need.
name
Faith Yim
Software Engineer
Badge for HTML, CSS and Web Browser Fundamentals, ExpertBadge for Software Design and Architecture, IntermediateBadge for Debugging and Troubleshooting, Advanced
+14
It's an amazing product and exceeded my expectations, helping me prepare for my job interviews. Hands-on learning requires you to actually know what you are doing.
name
Alex Bush
Full Stack Engineer
Badge for JavaScript Programming and DOM API, ExpertBadge for Front-End Development, IntermediateBadge for Server-Side Programming, Advanced
+9
I'm really impressed by the AI tutor Cosmo's feedback about my code. It's honestly kind of insane to me that it's so targeted and specific.
name
Abbey Helterbran
Tech consultant
Badge for Computer Science Fundamentals, AdvancedBadge for Prompt Design and Development, DevelopingBadge for Storytelling, Expert
+8
I tried Leetcode but it was too disorganized. CodeSignal covers all the topics I'm interested in and is way more structured.
name
Jonathan Miller
Senior Machine Learning Engineer
Badge for Machine Learning and Predictive Modeling, ExpertBadge for Big Data Processing, AdvancedBadge for Advanced Prompting Techniques, Intermediate
+12
I'm impressed by the quality and can't stop recommending it. It's also a lot of fun!
name
Francisco Aguilar Meléndez
Data Scientist
Badge for General Programming, AdvancedBadge for Coding and Data Algorithms, AdvancedBadge for Deep Learning and Neural Networks, Expert
+11
27 practices
Go beneath the surface of classification algorithms and metrics, implementing them from scratch for deeper understanding. Bypass commonly-used libraries such as scikit-learn to construct Logistic Regression, k-Nearest Neighbors, Naive Bayes Classifier, and Decision Trees from ground up. This course includes creating the AUCROC metric for Logistic Regression, among others.
See details
21 practices
Delve into the intricacies of optimization techniques with this immersive course that focuses on the implementation of various algorithms from scratch. Bypass high-level libraries to explore Stochastic Gradient Descent, Mini-Batch Gradient Descent, and advanced optimization methods such as Momentum, RMSProp, and Adam.
See details
16 practices
Learn about Ensemble Methods and their implementation from scratch. This course covers the understanding and implementation of multiple ensemble methods such as Bagging, Random Forest, AdaBoost, and Gradient Boosting Machines like XGBoost without relying on high-level libraries.
See details
15 practices
Navigate through the intricacies of Unsupervised Learning and Clustering in this hands-on course. Skip the high-level libraries and build core aspects of unsupervised learning methods from scratch, including k-Means, mini-batch k-Means, Principal Component Analysis, and DBSCAN. Learn to assess cluster quality with crucial clustering metrics like homogeneity, completeness, and v-metric.
See details
10 practices
Dive deep into the theory and implementation of Neural Networks. This course will have you implementing tools at the heart of modern AI such as Perceptrons, activation functions, and the crucial components of multi-layer Neural Networks. All of this without the help of high-level libraries leaves you with a profound understanding of the underpinning mechanisms.
See details
Scan to download
Home
Paths
Other paths you may like
beginner
Introduction to Programming with Python
5 courses
121 practices
intermediate
Fundamental Coding Interview Prep with Python
5 courses
84 practices
intermediate
Mastering Algorithms and Data Structures in Python
5 courses
112 practices
advanced
Advanced Coding Interview Preparation with Python
5 courses
87 practices
intermediate
Full-Stack Engineering with JavaScript
6 courses
192 practices
intermediate
Journey into Data Science with Python
7 courses
217 practices
beginner
Java Programming for Beginners
7 courses
184 practices
beginner
Prompt Engineering for Everyone
5 courses
75 practices
Home
Company
AboutCareersLeadershipTalent ScienceNewsroom
Collections
Generative AIBusiness & LeadershipInterview PrepAI & Machine LearningLearn to CodeData Science & Engineering
Platform
Platform OverviewSkills AssessmentsLive Tech InterviewsAI InterviewerAI Role-PlayAI Tutoring with CosmoCertified Assessments
Roles
Talent AcquisitionEngineering LeadersSales LeadersCS & Support LeadersIO PsychologistsIndividuals
Resources
Resource LibraryBlogCustomer StoriesInterview PrepAPI Docs
Support
Knowledge Base
Home
Copyright © 2025 CodeSignal
PrivacyTermsSecurity & Compliance