Dear students, today's session is an exciting journey into the world of Binary Search Trees (BSTs)! Up until now, in our Understanding and Using Trees in Python course, you've gained extensive knowledge about a variety of tree structures, explored the Breadth-First Search (BFS) and Depth-First Search (DFS), and learned about Heaps in detail. Today, we're progressing to another fundamental subject that leverages the tree structure to optimize data storage and searching processes — the Binary Search Tree (BST).
In essence, Binary Search Trees are excellent data structures that optimize search operations by appropriately arranging data elements based on certain properties. These trees' "left-small, right-large" order property helps ensure fast search, insertion, and deletion operations. Essentially, BSTs are tree structures designed to make data retrieval and storage efficient and simpler.
The ultimate goal of today's lesson is three-fold. First, we will understand the intricate workings of BSTs; then, we will implement them in Python using the CodeSignal IDE, and finally, we'll apply this knowledge to solve complex algorithmic problems leveraging BSTs. So, without further ado, let's set out on this exciting exploration of BSTs!
Binary Search Trees (BSTs) are named for their binary nodal structure, where each node links to two child nodes — much like a binary tree. However, what differentiates them is a crucial property ingrained in them: every node ensures that the values in its left subtree are less than or equal to its value, and the values in its right subtree are greater than its value. This property facilitates highly efficient search operations.
Let's illuminate this concept with a simple instance. Take a look at the BST below - note that for every node, all elements in the left subtree are smaller than the node value, and all elements in the right subtree are larger than the node value.
Here, 5
sits at the root of the tree, its left subtree contains values , , and , all less than the root value , and the right subtree contains values and , both larger than . The same condition holds for all other nodes in the tree. This simple example provides a clear insight into the underlying logic that governs the BST's node placement.
